A Self-adaptive Classifier for Efficient Text-stream Processing

نویسندگان

  • Naoki Yoshinaga
  • Masaru Kitsuregawa
چکیده

A self-adaptive classifier for efficient text-stream processing is proposed. The proposed classifier adaptively speeds up its classification while processing a given text stream for various NLP tasks. The key idea behind the classifier is to reuse results for past classification problems to solve forthcoming classification problems. A set of classification problems commonly seen in a text stream is stored to reuse the classification results, while the set size is controlled by removing the least-frequently-used or least-recently-used classification problems. Experimental results with Twitter streams confirmed that the proposed classifier applied to a state-of-the-art base-phrase chunker and dependency parser speeds up its classification by factors of 3.2 and 5.7, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Cost-efficient enactment of stream processing topologies

The continuous increase of unbound streaming data poses several challenges to established data stream processing engines. One of the most important challenges is the cost-efficient enactment of stream processing topologies under changing data volume. These data volume pose different loads to stream processing systems whose resource provisioning needs to be continuously updated at runtime. First...

متن کامل

یک چارچوب نیمه‌نظارتی مبتنی بر لغت‌نامه وفقی خودساخت جهت تحلیل نظرات فارسی

With the appearance of Web 2.0 and 3.0, users’ contribution to WWW has created a huge amount of valuable expressed opinions. Considering the difficulty or impossibility of manually analyzing such big data, sentiment analysis, as a branch of natural language processing, has been highly considered. Despite the other (popular) languages, a limited number of research studies have been conducted in ...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014